
Chapter 2
The Scrum Team

What is a scrum team?

Multidisciplinary, self-organizing, non-hierarchical -- what do these
mean? It sounds like a recipe for anarchy or utopia, and in fact, itʼs
both. A Scrum team left to its own devices without the many specific
disciplines of Scrum is exactly what Dilbertʼs Pointy Haired Boss
thinks of agile when he says, “That means no more planning and no
more documentation. Just start writing code and complaining.”

However, itʼs the interaction of these elements of team structure and
organization that allow the various Scrum practices to produce work-
ing software efficiently while keeping everyone engaged, empow-
ered, and enthusiastic.

The multidisciplinary aspect of the Scrum team is the reason that the
team is capable of taking responsibility for the entire project. There is
no testing team, no architectural team, no user experience team, no
programming team, no domestic and remote teams, and no PMO.
Thereʼs no one else to blame if the team fails to deliver, because
there is only one team, and that team has all the skills within it that
are required to do the job. The team is also empowered to identify
and seek out skills that it needs to incorporate into itself to be suc-
cessful, if the team feels that some skills are lacking. During a pro-
ject, the composition of a team can change as the teamʼs needs
change, and some team members may not be solely dedicated to the
team full-time (although I strongly discourage this practice as it
causes costly task-switching), but in the end, if youʼre on a Scrum
team than for that iteration, you are just as responsible for meeting
the teamʼs iteration goal as everyone else.

What are Pigs and Chickens?
Just Google “pigs and chickens” because I will not re-tell the joke.
The important thing about the concept of pigs and chickens is that
you can tell them apart and yet they both count. Briefly, pigs are the
committed ones, they are the ones whose day to day life is the pro-
ject. Their calendar is full of stuff to do, but if any of it isnʼt adding

This text copyright Paul Klipp 2009 - this is a draft version 0.07

PMO: Project Man-
agement Office. The
body that provides the
full suite of skills and
services required to
service the project
management needs
of all teams in a tradi-
tional software devel-
opment organization.

tangible value to the project, then theyʼre doing something wrong.
These are the people who are going to spend their whole day coding,
testing, designing, or what-not to push the project goals forward
every day.

Chickens count, too, and pigs can easily forget that. Thatʼs why the
idea of “pigs and chickens” is valuable, because it reminds them all
that there are two sets of players who both matter. Chickens are very
concerned about the welfare of the project. They want to know how
itʼs going, when it will be done, how it will work because they are go-
ing to use it, sell it, or in some way derive value from it. Keeping
these people informed and happy is important, just so long as they
donʼt keep the pigs from doing their job. Chickens could be sales-
people, marketing managers, end users, beta testers, friends of the
CEO, whatever. They have a right to be involved, but they are not ac-
tually responsible for the deliverables.

The way I do scrum, pigs do the heavy lifting. They decide who does
what, how and when. They should be in every scrum meeting and
every iteration planning meeting and every retrospective. They
should contribute ideas and concerns. I consider it part of my job as
a scrum master to help all pigs feel committed and valued, coaxing
reluctant opinions and helping the team to work as a flat organization
of equals committed to a shared goal. How they do that is the teamʼs
responsibility.

I also feel that the scrum master has a responsibility to the chickens.
Chickens are welcome to listen in on meetings, but not to interrupt
them. Good ideas, valuable input, and questions that come up from
chickens in meetings can almost always be directed to the appropri-
ate team member for discussion after the meeting. But itʼs important
that chickens are allowed to feel involved. I make sure that they can
attend meetings, view demos, access bug lists, backlogs, and track-
ing data. They may have valuable input for the product owner, but
they will only be happy and buy in to the process if they feel that their
right to information is being respected.

What is a self-organizing team?
Perhaps the best way to describe the notion of a self-organizing team
is to contrast it with the alternative, command and control, model of
team organization. In the familiar command and control model, one
person or a committee is tasked with deciding what team members

This text copyright Paul Klipp 2009 - this is a draft version 0.07

should do, how they should do it, and how to check to ensure that
they are doing what they are supposed to. In a software environment
that usually means a project manager who makes certain promises
to a client based on a detailed plan who then parcels out the work to
programmers (the command half of the equation) and then sticks his
head in their cubical periodically asking, “is it done yet?” to which the
typical answer is “90% there!” Thatʼs the control part of the equation.
The weaknesses of this approach are that it empowers management
at the expense of programmers and invests in the managers respon-
sibility for something that they canʼt really control. Thatʼs not to say
that programmers really have complete control over feature imple-
mentation, but they are a lot closer to the work.

In a self-organizing team, the team collectively takes responsibility for
goals and is therefore more committed to them. The team parcels out
tasks to the people who are most interested in doing them or most
qualified to do them, again leading to higher levels of commitment. A
team empowered to reach its goals in the way that works best for
them can adjust to the work habits, social dynamics, and personali-
ties of the team members to maximize efficiency in ways that a di-
rected team can not. They also require less management overhead,
reducing costs.

If you start with the assumption that most people would prefer to feel
good about their jobs and the quality of their work, giving them the
tools to succeed and to improve makes sense. Generally speaking,
Iʼve found that programmers more than most, want to enjoy and be
mentally and emotionally fulfilled by their work. Thatʼs where the
learning aspect of the agile team comes into play. Giving the team a
structured approach to learning from mistakes and improving their
process and practices allows them to take an active role in improving
the quality of their own work life by improving the pride they can take
in their work. Everyone wins. More about this when we talk about ag-
ile retrospectives.

How does a non-hierarchical team work?
Effective problem-solving within a team depends on having a shared
goal and empowered team members. Thatʼs the essence of the self-
directed team. The non-hierarchical nature of the team is essential
for having a shared goal. When the boss says, “Your goal is to do X
by Thursday!” then itʼs not really your goal. But when a team of
equals agrees to an answer to the question “What can we as a team

This text copyright Paul Klipp 2009 - this is a draft version 0.07

reasonably commit to in the next two weeks?” then youʼve got a goal
you can get behind. It might seem counter intuitive to empower a
team to tell their client or boss what their goal is, but remember that it
is the product owner who set the priorities. Assuming that quality is a
key ingredient of success, then forcing any unrealistic goal on a team
not only degrades quality, but also drastically raises the risk of failure
and is demoralizing to the team.

A non-hierarchical team is not one without a boss. The boss is the
backlog. They are not making up things to do that have no business
value; they are committed to delivering the backlog in the most effi-
cient manner possible without sacrificing quality. If they are not, then
the problem lies not in the method, but in the team selection. The ba-
sic assumption is that people like to do their best work. That doesnʼt
mean that people like to deliver the most work. Not all people are
workaholics and, really, thatʼs not a healthy way to live or to create
quality software. It just means that eight hours passes much more
pleasantly for everyone when they know they are doing valuable
work that is making a positive contribution to a goal that they have a
stake in. People would rather the hours fly by in interesting activity
than drag by in meaningless inactivity. People would rather feel good
about themselves then live in fear that their shoddy work will be un-
covered.

With the right people, the non-hierarchical, self-directed team is the
ideal structure to let individuals shine, grow, and contribute their very
best efforts.

What does a ScrumMaster do?
Coaching is the primary role of the ScrumMaster. If a ScrumMaster
could go an entire iteration without speaking or writing a single email,
that would be a success. The ScrumMasterʼs primary role is to en-
sure that scrum practices are followed, communication is happening
effectively, and to remove any impediments to optimal performance.
It is not to manage anything or anyone. The ScrumMaster is no oneʼs
boss. The ScrumMaster is no more responsible for the success of the
project than any other member of the team. He or she may be the
recorder, updating the burndown chart, or not. The ScrumMaster
might conduct planning meetings and retrospectives, or not. It is only
the ScrumMasterʼs responsibility to ensure that somehow, these
things are done and done correctly.

This text copyright Paul Klipp 2009 - this is a draft version 0.07

The ScrumMaster also protects the team from distractions and the
iteration from scope creep.

It makes for an unusual role, in that the ScrumMaster has practically
no power and no responsibility, but that role is critical. To be success-
ful, a ScrumMaster must be valued by the team, including the prod-
uct owner. ScrumMasters can only influence through respect and di-
plomacy. In my experience, a good ScrumMaster makes all the dif-
ference, though, and is highly valued by development teams and cli-
ents alike, because they do for the team what everyone most wants.
The ScrumMaster helps make the team better.

What about the others? Testers, programmers, UI specialists?
Task allocation is done by the team depending on team memberʼs
skills, experience, and interests. While itʼs conceivable that a pro-
grammer might take a design task or a tester take a programming
task, there are no specific roles within the team. It is simply expected
that the team has the skills within it to do whatever testing, program-
ming, design, system administration, or other tasks are required to
achieve the sprint goals. If it doesnʼt, then the team must ask the
Scrummaster to find an addition to the team who has the required
skills.

This is not to say that there isnʼt a tester or a programmer or a de-
signer, but only to say that all team members are equal and equally
responsible for meeting sprint goals. There is no testing department
or design department to blame; there is only the team.

What does the Product Owner do?
The role of the product owner is perhaps the most crucial. It is the
product ownerʼs responsibility to represent the interests of all of the
stakeholders, deciding what gets done and when and how every fea-
ture works in order to deliver the maximum value to all stakeholders
and to the business.

The product owner does this in several ways. He or she constructs
and maintains the backlog of work to be done and sets priorities to
determine the order in which features are delivered. The product
owner communicates the vision to the team, so that everyone in-
volved understands the end goal.

This text copyright Paul Klipp 2009 - this is a draft version 0.07

In the iteration planning sessions, the product owner helps the team
to understand the goal of every user story so that the team members
who implement the features can see them from the end userʼs point
of view as well as understanding the business case behind every
story, so that they are able to make the best decisions as they face
the myriad challenges that each feature represents.

During the iteration, the product owner is accessible to the team to
answer questions and provide feedback in a timely manner to keep
the team moving efficiently forward.

Finally, it is the product owner who decides when enough value has
been delivered to release the product of an iteration to users.

The role requires a full understanding of the business case behind
the application and the needs of the users as well as excellent com-
munication skills and the full trust of the stakeholders. If any of these
elements are missing, the project will suffer.

Why should there be a single Product Owner?
There should only be one product owner, and that person must have
the trust and respect of all of the stakeholders. One of the biggest
frustrations of in-house development teams is the way that stake-
holders, especially those senior to the programmers, slip requests
(demands) in at the most awkward times. People who donʼt program
rarely understand that programming is not a technical skill. Knowing
a programming language does not qualify one to be a programmer,
nor does knowing how a computer works. Programming is an inven-
tive, creative, problem-solving process. It requires clear thinking, fo-
cus, and creativity.

In an agile team, the product owner is the one who is solely respon-
sible for the behavior of the product. The development team makes it
work, the testing team ensures that it is stable, the Scrummaster
helps the team keep the process efficient and effective, but the end
result is solely in the hands of the individual playing the product
owner role. This person represents all users and all stakeholders.
They may have access to UI designers, subject matter experts, focus
groups, and committees (Aarrrgh!) but in the end one of the beauties
of agile models is that they put the customer back in the driver's seat.
Just like an automobile driver, they may know their general destina-
tion, but they also have the freedom to make detours and to react
quickly to changing circumstances, even arriving someplace better

This text copyright Paul Klipp 2009 - this is a draft version 0.07

than they had originally intended. Driving an agile software project is
just as demanding as driving a motorcycle through rough weather on
a crowded highway. The wrong decisions, or perhaps worse yet, in-
decision, can sour the entire journey.
What is the time commitment of the product owner?
The workload depends on the scale of the deployment and on how
much support and buy-in you've managed to generate in your or-
ganization for this project. It is up to you as the product owner to de-
clare when the business value realized by an iteration is sufficient to
merit deployment in your organization. The biggest commitment is at
the beginning, when the product owner first creates and then priori-
tizes the product backlog. During development, at least on the scale
that I am most experienced with which is medium to large web appli-
cations, iteration planning meetings take up about half a day at the
start of each iteration and less if the backlog is well-maintained and
clear. It may be as little as an hour, depending on the complexity of
the features and the size of the team.

The strength of agile development is that rather than spending an
enormous amount of time defining the project up front and then wait-
ing patiently to see the results, you spend only a small amount of
time daily driving the project and course-correcting as needed so that
in the end, you arrive right where you want to be. The tasks are not
difficult or time-consuming, but the responsibility is great. You must
be prepared to devote a little time every day and during that time, to
give the task at hand your full attention and concentration. If you're
ready to do that, then you can be my perfect product owner.
How can I be a good product owner?
In our experience, it is the selection of the product owner that makes
the most significant impression on the success of the project. The
right product owner is the one who is most effective at discovering
the needs of all stakeholders (users AND investors) and working with
the development team to distill those needs into user stories and
clear explanations that provide adequate direction to the develop-
ment team. The wrong product owner does not consider other users,
doesn't seek creative solutions to user desires, is indecisive, or lacks
fundamental communication skills.

By working with some very different types of product owners I have
come to the conclusion that the right product owner has these traits:

This text copyright Paul Klipp 2009 - this is a draft version 0.07

They understand the business case. No one commissions soft-
ware for fun. Building software is expensive, and so behind every
software project is someone who expects to make (or save) more
money with the product than it will cost to build. A good product
owner understands the business case behind the decision to build a
custom product rather than to use something off the shelf. If she
doesn't, then the project runs a serious risk of having its funding
pulled. Even if you succeed at creating useful software, the cost and
value-impacting decisions, made without reference (or reverence) for
the business case, could still mean that the guys with the money
won't trust you again.

They understand UI design or respect the opinions of those who
do. Even with expert UI designers on the team, the product owner is
the one who approves or proposes the UI design that will ultimately
be the sole interface or barrier between users and the functions be-
neath. A product owner who imposes their own ideas on the UI, with-
out reference to other users or to standard UI design principles, will
drive the team to create a product that is a burden to users.

They have a capacity to focus. The product owner role is not a full-
time job. Most product owners spend most of their time as account-
ants, human resource managers, programmers, project managers, or
CEOs. However, when they step into the product owner role, the pro-
ject demands their full attention. Anyone who can't sit still and think
all the way through a problem for fifteen minutes to an hour until they
arrive at the best solution is ill-suited to drive an agile development
team.

They communicate complex ideas well. There is an art to writing
user stories. Ideally, a function is described in two or three sentences
that communicate all a developer needs to know in order to fulfill a
user need. Of course, there can be supporting documentation, but
essentially, a good user story speaks for itself, leaving nothing perti-
nent to chance but neglecting the obvious and leaving room for de-
velopers to implement the best solutions. Anyone can write a lot; it
takes special skill to communicate well while writing little.

They know how to use a crayon. Pictures do tell a thousand words.
While my favorite product owner is proficient with Photoshop and at-
taches mock-ups to his stories, a simple willingness to wander to the

This text copyright Paul Klipp 2009 - this is a draft version 0.07

whiteboard or sketch out a design on a tablet can often save a lot of
confusion.
They are responsive. A distributed team has to do agile develop-
ment in less than ideal circumstances. Ideally, the product owner is
right there in the ditch with the team. A distributed team will use a va-
riety of tools to communicate with the product owner, including
Skype, email, instant messengers, telephone, and various task or is-
sue tracking tools. A product owner who takes more than 24 hours to
reply to an email can easily leave the team in a lurch as the role of
the product owner requires being available to make decisions as the
developers progress. That said, one of the things Iʼve learned leading
distributed teams is that successful team members on distributed
teams think ahead. They know what feature or task they expect to do
next and they know what they need to do it so that they can ask in
the daily standup meeting before they start work on the next item.

They know how to provide constructive criticism. Part of the
product owner role is observing development progress and ensuring
that user stories are properly interpreted. Sometimes, a story might
be properly interpreted by a developer, but when the product owner
actually sees it, they realize there is a better way. That's why you
choose an agile process, right? Because it's agile. We can change
directions (or even horses) in mid-stream. However, that means get-
ting clear and useful feedback from the product owner. I define the
levels of feedback usability as:

Criticism: I don't like A.

Useful Criticism: When I do B, A happens and I don't like that.

Constructive Criticism: When I do B, A happens and I'd prefer if C
happened instead.

They are organized. During the planning game, especially when the
product owner and the development team are in different countries or
even just different cities, it is essential to the schedule that the prod-
uct owner be able to plan their time so that they are available to write
stories, respond to email, and participate in conference calls on
schedule. If they cannot, then development resources are wasted.
Since agile processes avoid scope creep by using fixed iteration
dates (timeboxed iterations), any delay manifests itself as reduced
functionality (lower velocity) at the end of an iteration.

This text copyright Paul Klipp 2009 - this is a draft version 0.07

If the person appointed to play the product owner role is lacking in
one or more of these traits, you will still get a stable, high quality,
working piece of software at the end of the process, but it is not as
likely to fit neatly with both your business case and your users' needs
and it will not be built in a way that maximizes the potential efficiency
offered by agile development processes.

This text copyright Paul Klipp 2009 - this is a draft version 0.07

