
Chapter 1
Adapting to Scrum

Why Consider Using Scrum?

Dissatisfaction is essential for change. That's an established truism
in the consulting businesses, where consultants know that their opin-
ions and evaluations won't be taken seriously and no meaningful
change can happen unless they can first establish that dissatisfaction
with the status quo is sufficient to justify taking real action. But
change is frightening. So why do we need a new method for building
software? Because the traditional way of building software is even
more frightening.

Clients are accustomed to huge losses; missed deadlines are the
norm; more software projects fail than succeed. In such a climate,
something new must evolve, and agile development and manage-
ment principles and methods have evolved to satisfy the need. I
know the situation all too well.

A decade ago, I began my foray into software outsourcing as a client
of a large intranet system for a publicly listed holding company. The
system was to link all the employees of the 34 companies owned by
this holding company so that they could share and retain knowledge.
I learned firsthand through that experience how challenging and
frightening software outsourcing can be. The fear stems from the fact
that the process is out of the client's control. A client can make re-
quests and even demands, but ultimately the quality of the software,
the time it is delivered, and the total cost often feel and even are
completely beyond the client's control. Even if they have a rock-solid
contract stipulating delivery dates and a fixed price, they know that
there's something the contract can't cover. Perhaps it's the ongoing
maintenance costs, maybe it's a feature that wasn't described just
right in the documentation, or perhaps it's that killer feature that no
one even thought of while defining the project. Something key is al-
ways out of the client's control.

This text copyright Paul Klipp 2009 - this is a draft version 0.20

Agile development processes, and the Scrum management frame-
work in particular, restore a sense of control and place the responsi-
bility for the various aspects of the software development process,
scope, time, cost, and quality, in the hands of the stakeholders who
are best able to manage them.

What is Agile Development?
Discipline is the essence of agile development. That might strike
some as odd, given that many people still think of agile development
as unplanned and without documentation. To anyone who has done
it, though, the one thing that leaves the biggest impression is that in
reality, the value of agile development comes only when the team
achieves a level of discipline rarely experienced in non-agile projects.
The reason is, that lacking other control measures and having as it
does total transparency to stakeholders, an agile team is under tre-
mendous pressure to perform, delivering fully-working and tested
features fast without ever allowing quality to slacken.

Agile development practices achieve the goal of producing quality
software fast by prioritizing first quality practices such as continuous
integration, test-driven development, concurrent testing, pair pro-
gramming, and shared code ownership (more on these later) while at
the same time, making progress very visible to the product owner
and other stakeholders. It changes the focus of the development
team from scope first, then time and lastly quality (so typical on tradi-
tional projects) to quality first, followed by scope and time. Scope is
kept small (only fixed for the current iteration of 1-4 weeks, typically)
so that the project can be highly adaptable to changing requirements
while still giving the team the stability of an unchanging near-term
goal.

In a nutshell, agile development is all about delivering high-quality
working product fast to achieve maximum value as early as possible
without sacrificing maintainability.

Who Invented Scrum?
The Scrum framework for software development, like many software
methodologies, evolved from lessons learned in manufacturing. It
was first named in 1986 in an article on manufacturing that appeared
in Harvard Business Review (add citation Jan 1986). This article
compared the new manufacturing approach to rugby, because the
whole team strives to proceed together. Its first documented use in

This text copyright Paul Klipp 2009 - this is a draft version 0.20

Scope: The entire set
of features, perform-
ance requirements,
usability requirements
and any other re-
quirements that are
necessary to consider
the project complete
and successful.

software development was in 1993, and in 1995 Ken Schwaber for-
malized the rules of Scrum for software development. Scrum ex-
ploded onto the mainstream in 2001 with the publication of “Agile
Software Development with Scrum” by Schwaber and Mike Beedle.
At the time that I adopted Scrum, this was the only text available in
print to use as a guideline.

Who Uses Scrum?
Scrum is not just a great process for building software. Iʼve used it for
planning a conference and for organizing internal marketing cam-
paigns, but this book is about offshore software development. Scrum
has been successfully used on projects ranging from very small with
teams of just a few people to very large with teams of over a hun-
dred.

Entrepreneurs, bootstrapping start-ups, small businesses, and global
enterprises use Scrum to improve quality, efficiency and control.
Scrum is ideal for in-house software development, but the practices
can also be applied to manufacturing, event planning, and many
other types of team-based project work. Scrum is extremely valuable
when outsourcing and offshoring, because it gives the client a degree
of insight into the development process that not only serves to allay
very reasonable concerns about quality control, progress, and mutual
understanding of requirements.

In my personal experience I have coached Scrum teams ranging in
size from two to fifteen people, sometimes co-located and other
times spread over three continents. My clients have ranged from
one-person unfunded start-ups to major multinational corporations
and non-governmental organizations, including the United Nations.

Why does Scrum work?
Scope changes are one of the primary causes of stress in traditional
software projects. Agile approaches to software development elimi-
nate scope change as a problem by recognizing its inevitability. In the
past six years since I adopted Scrum as my preferred project man-
agement framework I have never built a product to the original spec.
Inevitably, in the process of working closely with clients and deliver-
ing working software fast, I see that they get their best ideas when
they have their hands on their product and when the get stakeholder
feedback early.

This text copyright Paul Klipp 2009 - this is a draft version 0.20

Most software development contracts try to define the scope of the
work up front, and place all of the responsibility for managing the
scope on the development team. That arrangement creates problems
in light of the experiences that I've just related. When a contract de-
fines a fixed scope of work and usually a fixed budget, too, there is
only one thing that can give if both are to be met, and that's quality. It
doesn't take a genius to know that when the chips are down and the
deadline nears, as costs begin to exceed the budget and a develop-
ment team is facing the very real possibility of taking a loss on a pro-
ject by going over a fixed budget, desperate measures like working
people overtime, cutting testing, and substituting lower-cost interns
for senior programmers become not just tempting, but even a sur-
vival imperative.

What's more, fixed-scope agreements pit the development team or
project manager against the client by incentivizing them differently.
The client has a strong incentive to ensure that the scope is inter-
preted in the broadest possible sense, even to the extent of slipping
in new features for "free." The software team has the opposite incen-
tive, because the more narrow the scope interpretation, the higher
the profits on a fixed-price contract. When client and service provider
are adversaries, it's hard to establish a working, trusting relationship.

Agile processes like Scrum work by giving each party to a contract
responsibility over that aspect of the project that they are best suited
to control. The development team is responsible for delivering a qual-
ity product as efficiently as possible. The client is responsible for con-
trolling the scope of work, which also controls the budget. In this way,
both parties can collaborate without friction to produce the product
the customer needs, adapting as they go to changing requirements,
without sacrificing quality.

Statistics produced by the two CHAOS studies conducted by the
Standish Group revealed, among other very useful observations, that
the majority of features in software were rarely or never used [cita-
tion]. It's not hard to imagine that if you remove over 60% of the fea-
tures from a product, you'll get a lower-cost and higher-quality prod-
uct. The costs will be lower because, of course, there will be less
work involved in coding and testing the smaller product. The quality
will be higher because, most obviously since bugs reside in code,
less code equals less bugs. Less obviously, lower complexity leads to
more maintainable and more useable software. Maintainability and

This text copyright Paul Klipp 2009 - this is a draft version 0.20

usability are important quality measures that are often overlooked. It
doesn't really matter if the software is "bug-free" if no one can use it
and it costs a fortune to maintain.

In traditional software projects, the scope of the product tends to get
expanded beyond all reasonable proportions because it is designed
by committee. The is a strong incentive on the management team to
think of everything they might want the software to do, because they
know that changing the feature set after project initiation will require
intense re-negotiations and change requests. So the rack their brains
to imagine everything that any user might desire. The result is what
the Standish Group found, software in which 63% of the features
weren't appreciated by almost all users, but which had to be planned,
coded, tested, and paid for.

By allowing the client to change and adapt the feature set as soft-
ware is developed and delivered, agile approaches like Scrum re-
move the desire to created bloated products by building in only what
users actually want, thus reducing pressure on the budget and allow-
ing the development team to focus on creating the highest-quality
product that are capable of producing.

[Insert explanation of What is Software Quality - thanks @amrk]

7%

13%

16%

19%

45%

Requirements Use in System Always Used
Often Used
Sometimes Used
Seldom Used
Never Used

This text copyright Paul Klipp 2009 - this is a draft version 0.20

What does it mean to "embrace change"?
Change is an inevitability in software development. I've managed,
worked on, or consulted with hundreds of software projects and I
know that the myth of stable requirements lives only in the minds of
managers. The guys on the ground know that requirements change.
Anyone who's been coding and had a stakeholder lean over their
shoulder and "adjust" their priorities knows that's awkward and irritat-
ing. The reason why is that there is a significant mental cost involved
in task-switching. It's a cost that good programmers resent because it
lowers their productivity and good programmers are proud of their
productivity.

So does agile development with its mantra of embracing change
mean that good programmers grin through clenched teeth and smil-
ingly accept change in the middle of a task? Of course not. One of
the great beauties of agile development is that all agile methodolo-
gies and frameworks have the notion of the time-boxed iteration. That
means that there is a short period of time during which requirements
are static. It's an elegant solution for both the stakeholders and the
development team. It means that the programmers, designers, and
testers can start work every day with confidence that their plans for
the day and for the following days won't be interrupted, but product
owners, mangers, stakeholders giving input into the product also
know that when they have a new or different idea, they can adjust the
backlog for future iterations and their changes will be implemented
soon, because iterations are short. In this way, everyone wins. The
software adapts elegantly to changing requirements and the devel-
opment team is free to focus on the most efficient way to maximize
quality and productivity.

Confrontation is the enemy of collaboration. When I managed water-
fall or waterfall-like projects in the early days of my career, a big part
of my job was confronting clients with the costs of their demands.
New ideas and improvements were anathema, because they meant
rethinking, rework, re-estimating, and re-negotiating deadlines and
budgets. Telling clients "no" was the worst part of my job. That is per-
haps the primary reason that I adopted Scrum six years ago. It is
empowering to be able to work with a customer to stimulate their
creativity and add value to the final product. I also relished the idea of
sustainable successes, in cooperation with customers. Now, years
later, I've realized a previously impossible dream. I've never failed.

This text copyright Paul Klipp 2009 - this is a draft version 0.20

Again, citing the CHAOS study, most software projects fail. Failure is
the norm in my industry. Those that don't fail outright, in the sense
that they are never completed, go over budget and miss deadlines.
Since adopting and continually improving my Scrum process, I have
never failed to deliver software that satisfied a client, and out of doz-
ens of web applications, only three have gone over budget and two
have missed deadlines. In those cases, it was almost always the cli-
ent's decision to invest more time, rather than a failure of planning or
execution. Those kind of results would have been unthinkable to me
a decade ago.

There are many approaches to agile adoption, and all require the
support of the entire organization, but what worked for me was sim-
ply trying. Indeed, when you have a process in place I believe that an
experienced trainer or coach is always a boon, but I do not agree
with those who suggest that the risk of failing to implement a new
process to perfection the first time necessitates the participation of an
agile coach. Just the opposite. In order to have a real sense of own-
ership in the process, the team should be involved in the design, im-
plementation, and critical review of their own process. I began by
reading a few books, following agile blogs [todo add a footnote with
some link love for my favorite bloggers and authors], and getting the
general notion that there are a few key components to an agile proc-
ess:

•Focus on quality rather than scope

•Timeboxed iterations

•Self-organizing teams

•Frequent working releases

•A Flexible backlog of features

•Concurrent testing

•Periodic process reviews

That was enough to get me started on the right foot. Not only were
we quickly delivering better software on time, but we had a feedback
loop in place to ensure consistent improvement. I'll get into the de-
tails of implementing these core processes in later chapters, but put

This text copyright Paul Klipp 2009 - this is a draft version 0.20

simply, my opinion is that if the team is talking to the product owner
daily, releasing working and tested features on time in timeboxed it-
erations, and reviewing and improving the process, you have taken a
huge step in the direction of sustainable success.

Scrum is deceptively simple to learn. The core practices are clear
and easy to implement. When I began using Scrum in 2005 I had
merely read the book Agile Software Development with Scrum and
several blogs and launched straight into it. The real challenges of us-
ing scrum fall into three categories: discipline, continual improve-
ment, and teamwork. Because there is a difference between using
Scrum and excelling in Scrum; and thereʼs no such thing as perfect-
ing Scrum. A commitment to continual improvement by holding retro-
spectives at the end of every iteration and committing to adapting
your practices for incremental improvement is the most sustainable
route to excellence Iʼve found. Years on, our practices still include all
of the scrum practices we began using, but the ScrumMaster I was in
2005 would not recognize the process that we are using today. And
my team is still learning with every iteration we complete.

Discipline is crucial to any agile development process, and so I have
decided to dedicate an entire chapter to the question of why disci-
pline is essential and how to cultivate it.

[Insert somewhere - What is discipline? (a whole chapter, perhaps?) -
thanks, @MajorNichols]

Teamwork and especially the notion of a self-organizing team is a not
nearly as simple as it sounds. Project managers have to learn to be
team players, not team leaders. Senior programmers have to learn to
share responsibility for code quality. The team has to learn to settle
its own professional and interpersonal issues by itself. This is not a
natural way of working in most companies, and so itʼs a matter that
requires constant vigilance and careful consideration by everyone on
the team. In some teams, it may be a specific component of the ret-
rospective and it is also an area for continual improvement.

Nothing has changed my professional life like the switch to the
Scrum framework. As a project manager in traditional teams, my job
was rarely fun. It usually involved creating reams of documentation
for features that would never be developed, negotiating change re-
quests with clients and “pushing back” on perfectly good ideas,
badgering programmers for updates and trying to encourage them to

This text copyright Paul Klipp 2009 - this is a draft version 0.20

work faster than was really realistic to meet targets that had been
negotiated before anyone fully understood the risks, and then trying
to convince clients that the end result was what they asked for, even
if it wasnʼt what they really needed. No fun at all.

That all changed with Scrum. Now I engage with clients and they be-
come part of the team. All of my efforts are put into real value-adding
activities. Programmers on my teams are happy, clients are happy,
testers are happy. Everyone is happy almost all the time, because
they feel in control of their lives. They know their roles on the pro-
jects, they understand their responsibilities, and they can see how
they fit into the process. That is very close to how Aristotle defines
happiness in his Nichomachean Ethics, knowing and fulfilling your
role in life, and to the stoic idea of controlling what you can and ac-
cepting what you canʼt. These ideas are thousands of years old, but it
wasnʼt until recently that they were applied to software development,
and I feel very lucky to have started my career at the just right time to
benefit from these new tools.

Itʼs selfish of me to feel that the best impact of Scrum on my life was
that I have great relationships with happy clients. As overwhelming a
change as that is, I think it should properly be eclipsed by that fact
that over the years and dozens of project, none has failed. A couple
went over budget, but not to disastrous degrees. Every single one
launched successfully. If you are not part of the software world you
might be forgiven for saying, “Well, thatʼs your job. Donʼt be so proud
of not failing.” Anyone in the software world with any experience real-
izes that failure is the norm. Most software projects fail. Those that
donʼt invariably go dramatically over budget and blow deadlines out
of the water. If you still donʼt believe me, Iʼll refer you again to one of
the most comprehensive studies of software development practices
ever done, the Standish Groupʼs CHAOS report. The Standish Group
found that within their sample, 31.1% of software projects never
made it to completion. 52.7% cost over 189% of the estimated
budget. Only 16.2% of all software projects in the study were com-
pleted on-time and on-budget. KPMG Canada did a study with similar
findings, revealing that over 61% of the projects surveyed were con-
sidered a failure. The OASIG study done in the UK found that 7 out of
10 projects fail in some way. Itʼs a wild world we live in, and for me,
Scrum has tamed it.

[note: Citations for the studies above]

This text copyright Paul Klipp 2009 - this is a draft version 0.20

How do clients feel about the Scrum experience?
Empowered clients are easier to work with because they donʼt suffer
from the feeling that they have to tread lightly because they depend
on you. They are working with you because the want to. Giving them
the tools they need to track and manage their own projects, or even
to easily take the work away from you, means that they have a better
experience and you do, too. Lack of control and dependance can
lead to resentment, even when everything is going well. Iʼve often
marveled that a client whose project is going perfectly but who feels
alienated from the process by lack of control and be more agitated
and upset than a client who is actively involved in working with a
team to solve a crisis.

Some of my clients were skeptical at first, but within an iteration or
two, without fail, they are 100% on board with the scrum approach to
software development, especially if they have never encountered ag-
ile processes before. The enhanced communication, access to the
team, visibility into the process, control over the future, and the ability
to be a value-adding contributer dramatically changes the dynamic of
the relationship between client and vendor. I canʼt imaging going
back to the old way of doing things.

One of the best aspects of agile development is that agile teams re-
lease early and often. This practice quickly satisfies stakeholders by
showing them early that the team is productive. It also eliminates
compounding any misunderstandings about requirements, catching
mistakes early when they are easy and cheap to correct.

Perhaps the best thing about iterative releases is that in my experi-
ence customers get their best ideas only when they actually are us-
ing their software. If you wait until the product is finished to gather
input on it from clients and stakeholders, your best opportunities to
adapt to their real needs are wasted. Whatʼs more, as we saw from
the CHAOS report, most of what youʼve built was wasted effort.

Customers who havenʼt experienced Scrum are often put off by the
idea that they are required to participate daily or nearly daily. I find,
though, that over the life of an agile project, the product owner
spends less time using the scrum method then they typically spend in
the planning phase using traditional waterfall methods. But because
the work is spread over the life of the project, it is less intrusive, and
more valuable.

This text copyright Paul Klipp 2009 - this is a draft version 0.20

In latter chapters, Iʼll talk about exactly what the product owner does
in each phase of the product life cycle and Iʼll talk about the time
commitments that are required based on my experience.

The most important message I want to convey is that Scrum provides
a strategy for empowering everyone on the team in ways they might
never have expected. Programmers are empowered to focus on
quality and to choose the most effective ways in which to work. Pro-
ject managers are empowered by a process which takes from their
shoulders the burden of responsibilities for things that are beyond
their control. It pulls them out of the spreadsheets and puts them in
the thick of the action, working with people rather than just with num-
bers to actually contribute to a learning organization. And it empow-
ers product owners by giving them total transparency into the devel-
opment process and by allowing them to change their mind and con-
tribute to the evolution of their product. Itʼs just a more fun, more ef-
fective, and better way for a group of talented, professional people to
create a new software product.

[General note: add more examples]

This text copyright Paul Klipp 2009 - this is a draft version 0.20

